
npk

Primary Antioxidant NPK SOD Enzyme

Oxidation

What is Oxidation?

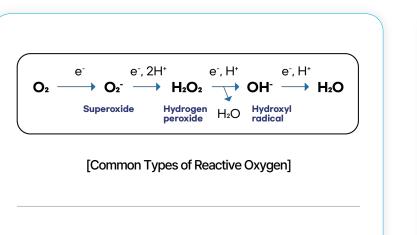
1) Combination with O2 2) Loss of a Hydrogen 3) Loss of an Electron

- Strong Chemical Reactivity Strong Energy
- Strong Cell Destruction

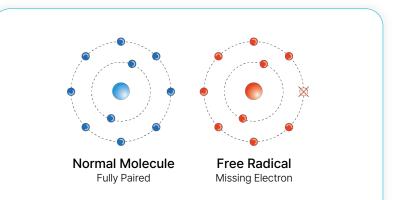
Due to oxidative stress, prehistoric lifeforms either died out completely or moved away from oxygen into environments like the ground or the anaerobic conditions of intestines.

"More than 90% of all diseases are caused by reactive oxygen" - Johns Hopkins University School of Medicine Research Team -

Oxidative Stress (Generation of Reactive Oxygen Species)



Reactive Oxygen Species are unstable and damage normal cells in an attempt to gain electrons. This phenomenon is called <mark>"oxidative stress."</mark>


When there is an excessive amount of active oxygen, it is chemically reactive and damages DNA and cells,

resulting in aging and chronic diseases.

Reactive Oxygen Species (Free Radicals)

Superoxide, Hydrogen Peroxide, Hydroxyl Radical

There is an **antioxidant system** in the human body that removes oxidizing substances, but if the balance between production and removal is broken due to metabolic imbalance in the body, problems such as cancer, aging, and obesity occur.

NPK SOD Enzyme

H₂O

02

Peroxide

CELL

DAMAGE

Antioxidant System

1) Enzymatic Antioxidants

- a) SOD : Superoxide Dismutase b) Catalase c) GPx : Glutathione Peroxidase d) GR : Glutathione Reductase f(x) Destroys Departing Orygon Dreduced by the Pedy f(x) by the Pedy f(x)
- ✓ Destroys Reactive Oxygen Produced by the Body
- Moderate Exercise and Nutrition Help to Produce Enzymatic Antioxidants

"The SOD Enzyme is the First Agent of the Antioxidant System."

NPK SOD Enzyme

Antioxidant System

NPK SOD Enzyme

2) Non-Enzymatic Antioxidants

Vitamins A, C, and E, and Glutathione convert or combine with reactive oxygen to remove them from the body

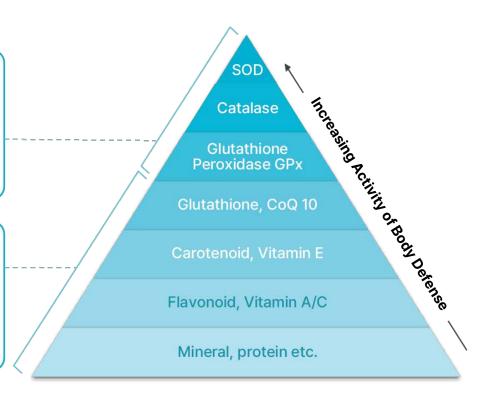
 Free Radical
 Antioxidants

 Missing Electron
 Extra Electrons

- a) Glutathione : a type of amino acid produced in the liver.
- b) Ascorbic Acid (Vitamin C) : a cofactor for enzymes, a radical scavenger, and involved in the transfer of electrons across cell membranes.
- c) Carotenoids : yellow, orange, or red pigments that are widely found in the plant kingdom, that are precursors of Vitamin A, and are effective radical scavengers or singlet oxygen scavengers.
- d) Vitamin E : aids in the formation of tocopheroxyl radicals through the donation of a hydrogen atom.
- e) CoEnzyme Q10 : exists in mitochondria to participate in electron transport and ATP production.

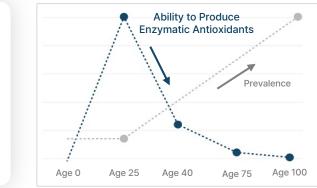
Antioxidant System

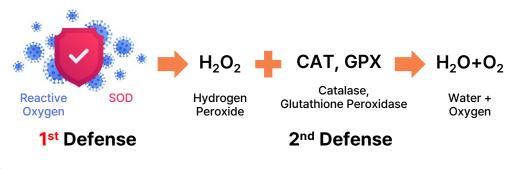
Enzymatic Antioxidants

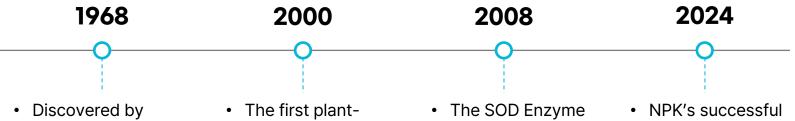

- **Primary** Antioxidants
- Continuous Action

(not consumed after reaction)

• Higher Stability than Other Antioxidants


Non-Enzymatic Antioxidants


- Secondary Antioxidants
- **Single** Action(consumed in reaction)
- Questionable Stability in Gastrointestinal
 Tract


SOD & Catalase Enzyme Necessity

The SOD Enzyme is the first line of defense against free radicals! The Catalase Enzyme is the second line of defense against free radicals! Like other enzymes in the body, the body's production of SOD Enzymes <u>decreases drastically</u> <u>after the age of 30.</u>

The History of the SOD Enzyme

 Discovered by Professors McCord and Fridovich

Initially, extracted from bovine blood and used by injection The first plantderived SOD
 Enzyme was
 extracted from
 cantaloupe

- The SOD Enzyme was selected as Europe's best antioxidant
- NPK's successful production of the SOD Enzyme via soybean fermentation

Research

- SOD-deficient mice die within days (Li Y, 1995)
- SOD-deficient mice develop liver cancer (Elchuri S, 2005)
- SOD-induced lifespan extension in fruit flies (Sun J, 2002)
- Differences in SOD expression are responsible for lifespan differences between queen ants and worker ants, not differences in nucleotide sequences (Lucas ER, 2018)
- SOD-deficient yeast have 5-fold higher rate of DNA damage (Muid, 2014)

NPK SOD Enzyme Specifications

Analysis Item	Certified Analysis and Internal Analysis	
SOD Enzyme Activity (IU)	"500,000 IU/g Guarantee" Analysis Results : When processing 100 mg/mL, 206,176 ± 6,892 (certified)	
Catalase Enzyme Activity (IU)	2,000 IU/g Guarantee Analysis Results : When processing 100 mg/mL, 843.89 ± 59.87 (certified)	
DPPH Radical Scavenging Ability (%)	When processing 100 mg/mL, 89.36% ± 0.19 (certified), 91.52% ± 9.30 (internal)	
α-Amylase (Unit/g)	184,717 (certified), 343,053 (internal)	
Protease (Unit/g)	5,934 (certified), 1,653 (internal)	
Fibrinolytic Enzyme Activity (Unit/g)	10,859 (certified), 15,565 (internal)	
Poly-Gamma Glutamic Acid (mg/g)	50.16 (certified)	
Acid Resistance	Both SOD and Catalase enzymes were confirmed to maintain enzyme activity at pH 2 (the pH of stomach acid)	

*IU = Unit/L = mU/mL

SOD Activity

Analysis Items	SOD Antioxidant Activity Evaluation
Sample Name	SOD Activity (mU/mL)
NPK SOD Enzyme 10 mg/mL	15748.98 ± 841.71 mU/mL
NPK SOD Enzyme 50 mg/mL	86345.75 ± 6080.89 mU/mL
NPK SOD Enzyme 100 mg/mL	206176.09 ± 6892.49 mU/mL

Catalase Activity

Catalase Antioxidant Activity Evaluation	
Catalase Activity (mU/mL)	
843.89 ± 59.87 mU/mL	

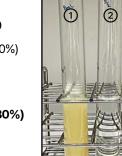
DPPH Radical Scavenging Activity

Analysis Items	DPPH Antioxidant Activity Evaluation DPPH Activity (%)	
Sample Name		
NPK SOD Enzyme 10 mg/mL	13.24 ± 4.05 %	
NPK SOD Enzyme 50 mg/mL	56.34 ± 1.05 %	
NPK SOD Enzyme 100 mg/mL	89.36 ± 0.19 %	

Antioxidant Effect Test (lodine Reaction) Our SOD vs Other SOD

Principle

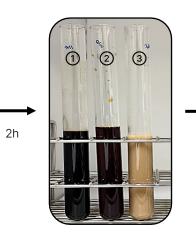
- The principle of a redox reaction is that it acts as an antioxidant and oxidizes itself and reduces other substances.
- When povidone and vitamin C meet, the iodine molecule in povidone is reduced by vitamin C and changes into a colorless iodide ion.

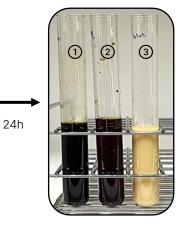

Experimental Results

 $\checkmark\,$ Catalase enzyme activity confirmed only in NPK SOD enzyme

nlot

3


 Other SOD Enzyme (30%)
 Water
 NPK SOD Enzyme (30%)

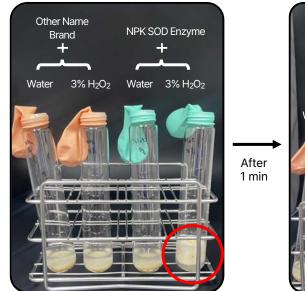


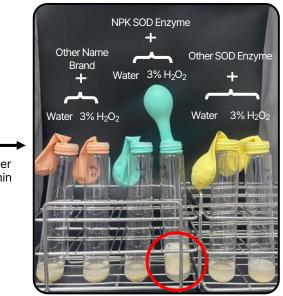
Original Sample Color

Immediately After Addition of lodine

Catalase Activity (Hydrogen Peroxide Decomposition)

Our SOD vs Other SOD


Principle


• Oxygen is generated from hydrogen peroxide by Catalase(as seen when foam is generated when hydrogen peroxide is sprayed on a wound)

$$H_2O_2 + CAT \rightarrow H_2O+O_2$$

Catalase Water + Oxygen

Experimental Results

✓ Catalase enzyme activity confirmed only in NPK SOD Enzyme

Catalase Activity (Hydrogen Peroxide Decomposition Reaction) NPK SOD Enzyme

Glutathione vs Vitamin C vs NPK SOD Enzyme

Experimental Results

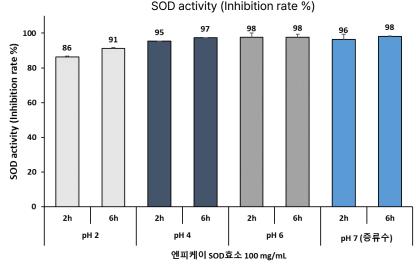
✓ Vitamin C ≒ Glutathione << NPK SOD Enzyme</p>

<Experimental Process>

• 5mL of diluted 3.45% hydrogen peroxide was added to 1g of sample each

<Experimental Results>

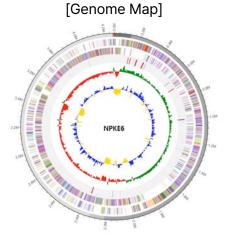
• Only the NPK SOD Enzyme showed catalase enzyme activity (confirmed via foaming due to oxygen)


VitaminC Clutathione SOD Enzyme

SOD Enzyme Activity Acid Resistance Test

(whether the SOD Enzyme is destroyed during digestion)

Experimental Results


- SOD Enzyme Activity Retention, according to 2h and 6h tests under various pH conditions(internal)
 SOD Enzyme Activity Maintained even at pH 2-6(internal)
- ✓ Experiment Principle : When the SOD Enzyme is active, it converts O₂ produced by xanthine oxidase into O₂ and H₂O₂, thereby inhibiting the formation of WST-formazan.
- ✓ SOD Activity (Inhibition Rate %) is the inhibition rate (the degree to which O₂ is converted to O₂ and H₂O₂) that inhibits the formation of WSTformazan.

Obtaining Safety Data for Strains (CJ Bioscience)

Resulst of GRIIS Essential whole-genome analysis of *B. amyloliquefaciens* NPKE6 (including antibiotic resistance / virulence gene analysis)

- Genome Size: Approximately 4.3 Mb; G+C Content: 45.1%; Functional Genes (CDS) Number: 4,412
- 10 antibiotic resistance genes not detected; 4 toxicity genes not detected
- B. amyloliquefaciens NPKE6 strain whole genome and safety data acquisition

[Antibiotic Resistance Gene Detection Results]

순위	항성제	검출여부 (YES/NO)	유사도
1	Clindamycin	NO	Lincosamides 계열
2	Kanamycin	NO	Aminoglycoside 계열
3	Erythromycin	NO	Macrolide 계열
4	Tylosin	NO	Macrolide 계열
5	Tetracycline	NO	Tetracycline 계열
6	Gentamicin	NO	Aminoglycoside 계열
7	Chloramphenicol	NO	Chloramphenicol 계열
8	Ampicillin	NO	Penicillin 계열
9	Streptomycin	NO	Aminoglycoside 계열
10	Vancomycin	NO	Glycopeptide 계열

[Toxicity Factor Gene Analysis Results]

Function	Gene	독성인자	검출역부 (YES/NO
Toxin	cydA	Cytolysin	NO
Adherence	asa1	Aggregation substance	NO
Exoenzyme	hyl	Hyaluronidase	NO
Exoenzyme	gelE	Gelatinase	NO

GRIIS Essential Whole Genome Analysis Results

(B. amyloliquefaciens NPKE6)

Confirmation of the Functionality of *B. amyloliquefaciens* NPKE6

• Confirmation of presence of antioxidant enzyme related genes (SOD, Catalase, GPx)

[Superoxide dismutase]

CDS name	Other name(s)	KEGG ID	Product	Function	Length
NPKE6_03433	SOD2	K04564	Superoxide dismutase	Iron; Metal-binding; Oxidoreductase.	846
NPKE6_03441	SOD1	K04565	Superoxide dismutase	Cell membrane; Copper; Disulfide bond; Lipoprotein; Membrane; Metal-binding; Palmitate; Signal; Zinc.	591
NPKE6_04025	SOD2	K04564	Superoxide dismutase	Iron; Manganese; Metal-binding; Oxidoreductase; Stress response.	606

[Catalase]

CDS name	Other name(s)	KEGG ID	Product	Function	Length
NPKE6_03260	katE CAT catB srpA	K03781	Catalase	Cytoplasm; Heme; Hydrogen peroxide; Iron; Metal-binding; Oxidoreductase; Peroxidase.	1614
NPKE6_03286	katE CAT catB srpA	K03781	Catalase	Heme; Hydrogen peroxide; Iron; Metal-binding; Oxidoreductase; Peroxidase; Sporulation.	2052
NPKE6_01086	katE CAT catB srpA	K03781	Catalase	Cytoplasm; Heme; Hydrogen peroxide; Iron; Metal-binding; Oxidoreductase; Peroxidase.	1446

[Glutathion peroxidase]

CDS name	Other name(s)	KEGG ID	Product	Function	Length
NPKE6_03520	gpx	K00432	Glutathione peroxidase	Oxidoreductase; Peroxidase.	483

Patent Application & PCT International Application

(using B. amyloliquefaciens NPKE6 strain)

SOD/Catalase Enzyme Patent Application / Priority Examination Request

출원번호통지서

- 출 원 일 자 2023.11.21
- 특 기 사 항 심사청구(유) 공개신청(무) 참조번호(12557)
- 출원번호¹⁰⁻²⁰²³⁻⁰¹⁶²⁵³⁴ (접수번호 1-1-2023-1299683-07) (DAS접근코드BAF6)
- 출원인 명칭 엔피케이(주)(1-2013-031231-7)
- 대리인 성명 황이남(9-1998-000610-1)
- 발명자 성명 손성오 조운희 전소헌
- 발명의 명칭 슈퍼옥사이드 디스뮤타아제 활성 및 카탈라아제 활성을 가지는 팽회곡물 발효효소, 이의 제 조방법 및 이를 포함하는 식품 조성물

SOD/Catalase Enzyme PCT International Application

PCT231	-	1/4
PCT 출	원서	
		(전자적 형태가 원론)
0	수리관청 전용	
0-1	국재출원번호	PCT/KR2023/018975
0-2	국제출원일자	2023년 11월 23일 (23.11.2023)
0-3	수리관청 명칭 및 "PCT 국제출원"	대한민국 특허청 PCT 국제출원
	LILLONDOWN, DOX & BUI	
0-4	서식 PCT/RO/101 - PCT 출원서 우측에 기재된 바와 같이 작성되었다.	5-57 EV
0-4-1	우속에 기자된 바와 같이 작성되었다.	ePCT-Filing Version 4.12.005 MT/FOP 20231109/1.1
0-5	신형	
0-6	아래 서명인은 본 국제 출원서가 특허협 출원인이 지정한 수리관형	
0-0	물원인이 지영한 우리관정 출원인 또는 대리인의 서류함조기호	대한민국 특허청 (RO/KR)
0-7		PCT2318
	발명의 명칭	슈퍼옥사이드 디스뮤타아제 활성 및 카탈라아제 활성을 가지는 평 화곡물 발효효소, 이의 제조방법 및 이를 포함하는 식품 조성물
11	출원인	
II-1	이 사람은	오직 출원인 (applicant only)
11-2	우측 지정국에 관한 출원인	모든 지정국 (all designated States)
II-4ko	성명	엔피케이 주식회사
III-4en	Name:	NPK INC.
II-5ko	주소	대한민국 57309 저라남도 담았군 담았음 에코길 61
II-5en	Address:	61, Eco-gil, Damyang-eup Damyang-gun Jeollanam-do 57309 Republic of Korea
11-6	국적	대한민국 KR
11-7	거주국	대한민국 KR
11-8	진화번호	+8261-383-5544
II-10	이메일 주소	ibsy9046@nate.com
II-10(a)	이에일 사용동의 수리관청, 국제조사기관, 국제사무국, 국 제에비실사기관이 필요 시 이 이메일 주 를 사용하여 이 국제 출원과 관련하여 별 행된 통치서를 승부할 것에 등의한다.	이 지 지지 저 하에서 물지 나라 수님 (나라 물지 나는 이바소)
II-11	출원인 코드	1-2013-031231-7

npk

Thank you

www.npkor.co.kr

Address : 61 Eco-gil, Damyang-eup, Damyang-gun, Jeollanam-do, Korea

Call us : 82-61-383-8653 / 82-2-570-6091

Our mail : naturepurekorea@naver.com / npk_korea@naver.com

